Photocurrent imaging of charge transport barriers in carbon nanotube devices.
نویسندگان
چکیده
The realization of high-performance electrical devices incorporating single-wall carbon nanotubes critically depends on the minimization of charge transport barriers in the tubes and at the contacts. Herein we demonstrate photocurrent imaging as a fast and effective tool to locate such barriers within individual metallic nanotubes contacted by metal electrodes. The locally induced photocurrents directly reflect the existence of built-in electric fields associated with the presence of depletion layers at the contacts or structural defects along the tubes.
منابع مشابه
Imaging of the Schottky barriers and charge depletion in carbon nanotube transistors.
The photovoltage produced by local illumination at the Schottky contacts of carbon nanotube field-effect transistors varies substantially with gate voltage. This is particularly pronounced in ambipolar nanotube transistors where the photovoltage switches sign as the device changes from p-type to n-type. The detailed transition through the insulating state can be recorded by mapping the open-cir...
متن کاملOptoelectronics in Carbon Nanotube Photodiodes and Graphene Hetero-Interface Devices
The excellent thermal, electronic and optical properties of carbon nanotubes (NTs) and graphene strongly motivate the use of these materials in optoelectronic devices. Here, we review our recent investigations of NT and graphene optoelectronic devices. By studying individual NT and graphene devices, we aim to uncover novel physical phenomena and establish a foundation for future applications in...
متن کاملZener tunneling and photocurrent generation in quasi-metallic carbon nanotube pn-devices.
We investigate the electronic and optoelectronic properties of quasi-metallic nanotube pn-devices, which have smaller band gaps than most known bulk semiconductors. These carbon nanotube-based devices deviate from conventional bulk semiconductor device behavior due to their low-dimensional nature. We observe rectifying behavior based on Zener tunneling of ballistic carriers instead of ideal dio...
متن کاملCompeting Photocurrent Mechanisms in Quasi-Metallic Carbon Nanotube pn Devices.
Photodetectors based on quasi-metallic carbon nanotubes exhibit unique optoelectronic properties. Due to their small bandgap, photocurrent generation is possible at room temperature. The origin of this photocurrent is investigated to determine the underlying mechanism, which can be photothermoelectric effect or photovoltaic effect, depending on the bandgap magnitude of the quasi-metallic nanotube.
متن کاملPhotocurrent spectroscopy of exciton and free particle optical transitions in suspended carbon nanotube pn-junctions
Articles you may be interested in Single carbon nanotube photovoltaic device Scanning photocurrent and photoluminescence imaging of a frozen polymer p-n junction Appl. Large-signal and high-frequency analysis of nonuniformly doped or shaped pn-junction diodes Direct probe of excitonic and continuum transitions in the photocurrent spectroscopy of individual carbon nanotube p-n diodes Appl.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nano letters
دوره 5 3 شماره
صفحات -
تاریخ انتشار 2005